ATS Aro - Thermal Solutions

### Analysis of Experiments and Simulations for the Certification of Aeronautical Structures and Sensors in Icing Conditions.

### Dr. Guilherme Araujo Lima da Silva

ATS4i Aero-Thermal Solutions for Industry gasilva@ats4i.com.br



Fourth Workshop on Aviation Safety (WAS), May 29th and 30th, 2014, Rio de Janeiro, RJ, Brazil Organization COPPE/UFRJ

ATS 4 Aero - Thermal Solutions for Industry

www.ats4i.com.br

#### **Our Technical Leaders**



Principal Engineer Francisco Domingues Alves de Sousa,

- ✓ 1970-80 CGreco Consulting -Consultant in Industrial Combustion
- 1980-2010 Institute for Technological Research - Thermal Engineering Division where leaded laboratories and research teams and projects with industry
- ✓ Petrobras and IPT Innovation Awards
- ✓ Since 2010 at ATS4i as associate



**Director Aerospace** Guilherme Araujo Lima da Silva, PhD

- 1997-2007 Embraer Air Managements Systems, Environmental Control Systems, Bleed Air Systems, Ice Protection, Avionics Cooling at AMX, F-5 BR, Embraer 120, ERJ 145/140/135, Embraer 170/190, Phenoms
- ✓ PhD 2008 Heat and Mass Transfer in Two-Phase Flow in Anti-ice Systems
- ✓ Since 2007 at ATS4i as associate



Director Heavy Industry Marcos Noboru Arima, PhD

- 1998-2007 Institute for Technological Research (IPT) - Thermal Engineering Division where leaded researches and managed several consulting works
- PhD 2008 Theoretical-experimental study on two-dimensional confined jets
- ✓ Since 2007 at ATS4i as associate



#### **ATS4i Selected Customers**



ATS<sub>4</sub>*i* Aero -Thermal Solutions

- 1. Introduction
- 2. SAE AIR1168/4 Analytical Model
- 3. Simple Analysis Coupled Heat and Mass Transfer
- 4. Inclusion of effects of Impingement and Ice Crystals
- 5. Conclusions and Possible New Directions



# 1. Introduction



Introduction

**SAF AIR1168/4** 

Heat and Mass

Impingement/Crystals

Conclusions/Next

#### Air Data Probes Ice Protection:

- ✓ High water droplets collection efficiency
- ✓ Usually fuselage mounted
- ✓ Typically electrically heated
- ✓ Ice crystals can enter in the probe



✓ Next versions of TSO-C16 may refer to future SAE AS 5562





Source: Duvivier, E. (EASA) "Flight Instrument External Probes", 1st SAE Aircraft & Engine Icing International Conference, Seville, 2007





Conclusions/Next

#### Introduction SAE AIR1168/4 Heat and Mass Impingement/Crystals

When designing, testing and certifying ice protection system for Pitot tubes, some questions will appear:

- What are the most critical conditions to base my design?
  - ✓ Standards, regulations and scientific-engineering knowledge
- How can I prove that my design is adequate?

✓ By test, analysis or simulation

• How can I test it in tunnel to represent actual atmospheric flight condition?

Similarity rules and procedures for icing tunnel testing



SAF AIR1168/4

Heat and Mass

Impingement/Crystals

Conclusions/Next

### **Objectives**

- $\checkmark$  To compare traditional and new standards to verify criticality and applicability of each one
- ✓ To perform heat transfer flight-tunnel similarity studies in order to verify simple scaling limits
- ✓ To collaborate with UFRJ-COPPE research efforts to define test conditions for their icing tunnel

### Scope

- ✓ Heat and mass transfer aspects of ice protection of probes
- ✓ NO focus on absolute results! Only comparative.
- ✓ Do a simple analysis FIRST to understand trends and phenomena



Source: Duvivier, E. (EASA) "Flight Instrument External Probes", 1st SAE Aircraft & Engine Icing International Conference, Seville, 2007



-10.0

0.0

10.0

Convection increases

20.0

Our Office ATS4i Engenharia Estudos e Projetos Ltda. Rua Cotoxo, 611 cj. 63 - São Paulo, SP, Brazil - CEP 05021-000

-20.0

TAT [C]

0.00

-40.0

-30.0



Conclusions/Next

#### Introduction SAE AIR1168/4 Heat and Mass Impingement/Crystals

### **Certification Means of Compliance**

#### ✓ Flight Test

- > PRO: It represents actual aircraft operation
- > CON: It is expensive
- > CON: It is hard to control all variables
- > CON: It depends on atmospheric condition (it needs an icing hunter)

#### ✓ Icing Tunnel Test

- > PRO: It is less expensive than flight test
- PRO: It controls all variables
- > CON: It is limited to represent actual operation (envelope limits)

#### ✓ Analysis and Simulation

- > PRO: It is less expensive than flight test
- PRO: It controls all variables
- > PRO: It is represent actual aircraft operation (envelope "corners")
- > CON: It needs validation with flight and tunnel data (spot checks!)



Future SAE AS5562 (Draft)

SAE AIR1168/4

#### Ice and Rain Qualification Standards for Air Data Probes

✓ Under development

Introduction

- ✓ Studies based on draft version of SAE AS5562
- ✓ Used only two types of information from future AS5562 in this presentation:

Heat and Mass

Impingement/Crystals

Conclusions/Next

- Conditions
  - Supercooled Liquid,
  - Ice Crystals
  - Mixed Phase Icing
  - Rain
- Testing
  - Operational limitations (similarity guidelines)



### **Ice Crystals Conditions**

#### as per future SAE AS5562 (Draft)

| Table 4: Ice | Crystal Test Condition | IS       |             |         |           |                     |          |
|--------------|------------------------|----------|-------------|---------|-----------|---------------------|----------|
| Test         | Class                  | Altitude | Airspeed    | SAT     | MMD       | IWC                 | Duration |
| Condition    | Class                  | (KFt)    | (KTAS/Mach) | (deg C) | (µ)       | (g/m <sup>3</sup> ) | (Min)    |
|              | 1                      | 23       | 240/.39     |         |           | 6.5                 |          |
| C1           | 2                      |          | 341/.55     | 20      | 150 250   |                     | 2        |
| 31           | 3                      | 28       | 382/ 62     | -20     | 150 - 250 | 7.3                 | 2        |
|              | 4                      |          | 3027.02     |         |           |                     |          |
|              | 1                      | 23       | 231/.39     |         |           | 3.9                 |          |
| 62           | 2                      | 31       | 327/.55     | 40      | 150 250   | 5.6                 | 2        |
| 32           | 3                      | 27       | 488/.82     | -40     | 150 - 250 | 6.4                 | 2        |
|              | 4                      | 51       | 512/.86     |         |           | 0.4                 |          |
|              | 2                      | 31       | 313/.55     |         |           | 3.4                 |          |
| S3           | 3                      | 42       | 466/.82     | -60     | 150 - 250 | 5.1                 | 2        |
|              | 4                      | 45       | 489/.86     |         |           | 5.2                 |          |
| S4           | 4                      | 45       | 477/.86     | -70     | 150 - 250 | 4.7                 | 2        |



Introduction

SAF AIR1168/4

Heat and Mass

Impingement/Crvtals

Conclusions/Next

### **Tunnel Condition Adjustment**

#### as per standard future SAE AS5562 (Draft):

#### ✓ Altitude limitation

- $\succ$  TAS<sub>test</sub> = TAS<sub>ref</sub>  $\rightarrow$  keep true air speed
- $ightarrow TAT_{test} = TAT_{ref} \rightarrow keep total air temperature$
- > SAT<sub>test</sub> = SAT<sub>ref</sub>  $\rightarrow$  keep static air temperature

#### ✓ Airspeed or Static Air Temperature limitations:

- $\rightarrow$  TAT<sub>test</sub> = TAT<sub>ref</sub>  $\rightarrow$  keep total air temperature > LWC<sub>toct</sub> = LWC<sub>ref</sub> \* TAS<sub>ref</sub> / TAS<sub>test</sub>  $\rightarrow$  change LWC to keep water catch
- > IWC<sub>tot</sub> = IWC<sub>rof</sub> \* TAS<sub>rof</sub> / TAS<sub>tot</sub>  $\rightarrow$  change IWC to keep ice crystals catch

ATS A Aero - Thermal Solutions for Industry

# 2. SAE AIR1168/4 Analytical Model

SUPERCOOLED LIQUID ONLY!!



Introduction

SAE AIR1168/4

Heat and Mass

Impingement/Crystals

Conclusions/Next

#### Model Based on AIR1168/4

#### ✓ Assumptions

- Zero-Dimensional (lumped analysis)
- Collection Efficiency b = 0.85
- > Surface fully wet  $\rightarrow$  F=1
- > Impingement area = total area of the analysis
- Temperatures above 0°C
- > Thin Water Film
- > Effects considered:
  - Convection
  - Water Vaporization
  - Water Impingement
- > Only supercooled liquid water
- No conduction or other heat lossess
- No ice melting effect







#### Similarity as per SAE AS5562 - Based on AIR 1168/4 Model

Altitude Limitation Alt=Atl(M)

|       |       |        |           |           |         |     | Tsup   |          | qo/so   |        |
|-------|-------|--------|-----------|-----------|---------|-----|--------|----------|---------|--------|
| SAT   | Mach  | LWC CM | Alt [kft] | Pamb [Pa] | V [m/s] | CAS | [K]    | Trec [K] | [W/in2] | q0 [W] |
| -30.0 | 0.440 | 0.125  | 20.0      | 46564     | 137.5   | 200 | 273.15 | 251.6    | 7.47    | 353    |
| -30.0 | 0.440 | 0.125  | 5.0       | 84448.9   | 137.5   | 262 | 269.35 | 251.6    | 7.46    | 353    |

Keep TAS, TAT, SAT, with same qo

#### TAS and Altitude Limitation Alt=Alt(M)

| Keep Mimp, TAT, with same go                                                                                                                                                     | SAT<br>-30.0<br>-25.2        | Mach<br>0.440<br>0.285 | LWC CM<br>0.125<br>0.191 | Alt [kft]<br>20.0<br>3.0 | Pamb [Pa]<br>46564<br>90875 | V [m/s]<br>137.5<br>90.0 | CAS<br>200<br>178 | Tsup<br>[K]<br>273.15<br>274.22 | Trec [K]<br>251.6<br>251.6 | qo/so<br>[W/in2]<br>7.47<br>7.46   | qo [W]<br>353<br>353        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|-------------------|---------------------------------|----------------------------|------------------------------------|-----------------------------|--|--|
| Keep Mimp, TAT, with same qo<br>-25.2 0.285 0.194 3.0 90875 90.0 175 274.22 251.6 7.46 353<br>Marginal or not<br>SAT and Altitude Limitation Alt=Alt(M) conservative as required |                              |                        |                          |                          |                             |                          |                   |                                 |                            |                                    |                             |  |  |
| Keep TAT, Mimp, with same qo                                                                                                                                                     | SAT<br>-40.0<br><b>-35.0</b> | Mach<br>0.440<br>0.271 | LWC IM<br>0.187<br>0.301 | Alt [kft]<br>19.0<br>2.8 | Pamb [Pa]<br>48548<br>91389 | V [m/s]<br>134.7<br>83.9 | 20<br>20<br>169   | Tsup<br>[K]<br>273.15<br>275.02 | Trec [K]<br>241.3<br>241.3 | qo/so<br>[W/in2]<br>10.03<br>10.04 | <b>qo [W]</b><br>475<br>475 |  |  |

ATS Aro - Thermal Solutions

# 3. Simple Model - Evaporative Cooling with Coupled Heat and Mass Transfer

SUPERCOOLED LIQUID ONLY!!



Introduction

SAE AIR1168/4

Heat and Mass

Impingement/Crystals

Conclusions/Next

#### Simple Model - Evaporative Cooling Only

#### ✓ Assumptions

- Zero-Dimensional (lumped analysis)
- Collection Efficiency b = 0.85
- > Surface fully wet → F=1
- Temperatures above 0°C
- > Thin Water Film
- Effects considered:
  - Convection
  - Water Vaporization
- Only supercooled liquid water
- No conduction or other heat lossess
- No impingement effect
- No ice melting effect



 $m_{H2O,i} = \frac{p_{vap,i}}{1.61 \cdot p_{outb} - 0.61 \cdot p_{vap,i}}$ 

(\*) Spalding, 1962





| Power   | Power   |           |     |      |      |       |          |          |
|---------|---------|-----------|-----|------|------|-------|----------|----------|
| Density | Density | Paltitude |     | Р    |      | v     |          |          |
| [W/in2] | [W/m2]  | [kft]     | SAT | [Pa] | Mach | [m/s] | Trec [C] | Tsup [C] |

#### Altitude Limitation Alt=Alt(M)

| 12.0 | 18600 | 20.0 | -30.0 | 46564 | 0.44 | 137.5 | -21.5 | 7.1 |
|------|-------|------|-------|-------|------|-------|-------|-----|
| 12.0 | 18600 | 5.1  | -30.0 | 84076 | 0.44 | 137.5 | -21.5 | 3.4 |

#### TAS and Altitude Limitation Alt=Alt(M)

| 12.0 | 18600 | 20.0 | -30.0 | 46564 | 0.44 | 137.5 | -21.5 | 7.1 |
|------|-------|------|-------|-------|------|-------|-------|-----|
| 12.0 | 18600 | 3.0  | -25.1 | 90877 | 0.29 | 90.0  | -21.5 | 9.9 |

#### SAT and Altitude Limitation Alt=Alt(M)

| 12.0 | 18600 | 20.0 | -40.0 | 46564 | 0.44 | 134.7 | -31.9 | 4.0 |
|------|-------|------|-------|-------|------|-------|-------|-----|
| 12.0 | 18600 | 2.8  | -35.1 | 91383 | 0.27 | 83.9  | -31.9 | 6.5 |

Despite simple, model has same trends for super cooled liquid water than AIR 1168/4 model

ATS<sub>4</sub>*i* Aero -Thermal Solutions for Industry

# 4. Proposed Model to Include Impingement and Ice Melting Effects





#### SAE AIR1168/4

Heat and Mass

Impingement/Crystals

Conclusions/Next

### **Proposed Model**

#### = evaporative cooling + impingement + ice melting effects

#### ✓ Assumptions

- Zero-Dimensional (lumped analysis)
- Collection Efficiency b = 0.85
- > Surface fully wet  $\rightarrow$  F=1
- Temperatures above 0°C
- > Thin Water Film
- Running wet OR Fully evaporative
- Additional Effects considered (others kept):
  - Water Impingement effect
  - Ice melting effect
- Ice Crystals and Mixed Phase
  - Low Convection in Enclosed Space inside Probe Tube
  - Internal Probe Ambient Temperature -5 °C (Arbitrary, need thermal analysis)





#### Study of Similarity Rules proposed by SAE AS5562

|                     | Power              | Power             |                    |     |           |      |            |          |                     |          |
|---------------------|--------------------|-------------------|--------------------|-----|-----------|------|------------|----------|---------------------|----------|
| LWC [g/<br>m3] Beta | Density<br>[W/in2] | Density<br>[W/m2] | Paltitude<br>[kft] | SAT | P<br>[Pa] | Mach | V<br>[m/s] | Trec [C] | Mimp [g/<br>(s*m2)] | Tsun [C] |

#### Altitude Limitation Alt=Alt(M)

| 0.125 | 0.85 | 12.0 | 18600.0 | 20.0 | -30.0 | 46564 | 0.44 | 137.5 | -21.5 | 14.6 | 5.3 |
|-------|------|------|---------|------|-------|-------|------|-------|-------|------|-----|
| 0.125 | 0.85 | 12.0 | 18600.0 | 5.1  | -30.0 | 84076 | 0.44 | 137.5 | -21.5 | 14.6 | 1.8 |

#### TAS and Altitude Limitation Alt=Alt(M)

| 0.125 | 0.85 | 12.0 | 18600.0 | 20.0 | -30.0 | 46564 | 0.44 | 137.5 | -21.5 | 14.6 | 5.3 |
|-------|------|------|---------|------|-------|-------|------|-------|-------|------|-----|
| 0.191 | 0.85 | 12.0 | 18600.0 | 3.0  | -25.1 | 90877 | 0.29 | 90.0  | -21.5 | 14.6 | 7.7 |
| -     |      |      |         |      |       |       |      |       |       |      | -   |

#### SAT and Altitude Limitation Alt=Alt(M)

| 0.125 | 0.85 | 12.0 | 18600.0 | 20.0 | -40.0 | 46564 | 0.44 | 134.7 | -31.9 | 14.3 | 1.6 |
|-------|------|------|---------|------|-------|-------|------|-------|-------|------|-----|
| 0.201 | 0.85 | 12.0 | 18600.0 | 2.8  | -35.1 | 91383 | 0.27 | 83.9  | -31.9 | 14-3 | 3.4 |

#### IWC=0 No Ice crystals considered. Only LWC!

Marginal or not conservative as required

ATS<sub>4</sub>*i* Aero - Thermal Solutions for Industry

www.ats4i.com.br

# Conclusions and Possible New Directions



Introduction

SAF AIR1168/4

Heat and Mass

Impingement/Crystals

Conclusions/Next

### Conclusions

- ✓ Simple Evaporative Cooling Model does provide qualitative results that allow trade-off and similarity for supercooled liquid water
- ✓ Modified Evaporative Cooling Model (ice crystals + water catch) results are adequate to perform rapid/simplified :
  - Analysis of similarity flight-tunnel regarding heat transfer effects
  - Comparison between air data probe standards/documents conditions in terms of heat load and water catch
- ✓ The similarity proposed by AS5562 must be complemented by a Thermal Heat Load Analysis, what eventually may lead to heat less the probe in tunnel



### Suggested Next Steps

- ✓ To perform a thermal analysis to assess the temperature inside the air data probe tube, which must include thermal radiation
- ✓ To study the transient ice melting problem inside probe tube with supercooled water, ice crystals and mixed phase
- ✓ To predict the 3D impingement over the probe
- ✓ To estimate the 3D water runback (film, beads, rivulets) movement and the surface wetness factor
- ✓ To correlate 3D results in order to use in simple analytical 0-D (lumped/black-box models)



- For supercooled liquid water and rain ice protection, it is important to consider:
- runback water flow (rivulets/film);
  laminar-turbulent transition and
  stream-wise temperature variation.

#### Runback affects

- ✓ The heat demand for ice protection systems → evaporative cooling
- The glaze ice accretion process

#### <u>3D structures and swept wing $\rightarrow$ simple</u> runback models (2D or quasi-3D) can not be applied.

Feasibility demonstrated by the present Pilot/Prototype Simulation → Now need an application/Research Project

deltaf e-7

7.5e-8

5e-8 2.5e-8



Introduction

SAE AIR1168/4

Heat and Mass

Impingement/Crystals

Conclusions/Next

#### **Generic Probe Results**



Liquid Water ONLY Freezing Rain and In-Cloud Need test data for validation!





# Thank you !

# Contact: Guilherme da Silva gasilva@ats4i.com.br

ATS<sub>4</sub>*i* Aero -Thermal Solutions for Industry

#### **Presentation References**

- Certification/Qualification Documents
  - Regulations FAR 25 and TSO C16a
  - Standards SAE AS390, SAE AS393, SAE AS403A, SAE AS8006, BSI 2G.135, MIL-T-5421B, MIL-T-5421A, MIL\_P-83206, MIL-P-25632B
- SAE Standard in preparation
  - > SAE AS5562 (Draft) Ice and Rain Qualification Standards for Airdata Probes
  - > AC-9C, Air Data Probe Standards Panel, SAE, 2006 (presentation)
  - > AC-9C, Design Requirement Cross Reference List Rev6, SAE (excel spreadsheet)
- ✓ SAE , SAE Aerospace Applied Thermodynamics Manual, "Ice, Rain, Fog, and Frost Protection", SAE AIR1168/4, Proposed Draft, 2006
- Spalding, D. B., "Convective Mass Transfer, an Introduction", McGraw-Hill, New York, 1963.
- ✓ Duvivier, E. (EASA) "Flight Instrument External Probes", 1st SAE Aircraft & Engine Icing International Conference, Seville, 2007 (conference presentation)

ATS<sub>4</sub>*i* Aero -Thermal Solutions for Industry

#### **Further Reading**

- ✓ Mason, J., "The Physics of Clouds", 2<sup>nd</sup> Ed., Claredon Press, Oxford, 1971 (book)
- ✓ Johns, D. (TC Canada), "Future Rulemaking Ice Protection Harmonization Working Group -Update", 1st SAE Aircraft & Engine Icing International Conference, Seville, 2007 (conference presentation)
- Bernstein, B., Ratvasky, T. P., Miller, D.R., "Freezing Rain as an in-Flight Icing Hazard", NASA TM--2000-210058, NCAR, Colorado, June (NASA Report)
- ✓ Jeck, R. K., "Representative Values of Icing-Related Variables Aloft in Freezing Rain and Freezing Drizzle", DOT/FAA/AR-TN95/119, Federal Aviation Administration, U.S. Department of Transportation, 1996 (FAA Technical Note)
- ✓ Jeck, R. K., "Advances in the Characterization of Supercooled Clouds for Aircraft lcing Applications", DOT/FAA/AR-07/4, Federal Aviation Administration, U.S. Department of Transportation, 2008 (FAA Report)
- ✓ European Aviation Safety Agency (EASA), ETSO C16 update , Terms of Reference, ToR Task number ETSO.009, Issue 1, August 31, 2009 (EASA document)
- ✓ Ice Protection Harmonization Working Group (IPHWG), Tasks 5 & 6 Working Group Report, October 2006, Rev A March 2007 (IPHWG report)
- ✓ Ice Protection Harmonization Working Group (IPHWG), "Task 2 Working Group Report on Supercooled Large Droplet Rulemaking", December 2005 (IPHWG report)